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Contact Theorems for Rough Interfaces 
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Contact theorems for rough surfaces are discussed. Simple relations for the 
average contact density are obtained for neutral and charged walls. When the 
walls are not planar there are new contributions proportional to the field 
gradients near the charged wall. 

KEY WORDS: Interphases, solid-liquid; exact results; rough interphases, 
surfaces. 

1. INTRODUCTION 

Contact theorems are very useful to estimate the accuracy of integral equa- 
tions and computer simulations for inhomogeneous systems near neutral or 
charged walls. 

We have derived t 1,2~ sum rules'for liquids near charged planar surfaces 
in which the total contact density was given as a function of the charge on 
the wall and the bulk pressure of the fluid. 

In recent times, and due to the rapid increase in computer perfor- 
mance, simulations of more realistic systems are possible. Nonsphericai 
solute molecules, and metal surfaces with crystal structures, are accessible 
to simulations of interfaces with discrete (and also nonsphericai) solvent 
(water) molecules. In these simulations it is very important to use a poten- 
tial with a correct equation of state (pressure). In general, in the models of 
water the interaction is either adjusted to the experimental value of the 
density and there is an error in the pressure, or (in a few cases) the interac- 
tion is adjusted to the pressure and there is a generally slight error in the 
density. For the simulation of interfaces, we think that the latter situation 
is preferable. The contact sum rules are based on force balance considera- 
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tions between the bulk pressure and the forces exerted by the molecules on 
the container walls. Although a formal derivation could be obtained by 
integration of the Born-Green-Yvon equation, it can be shown that all 
pair (or higher multiplet) interactions of molecules in the fluid phase cancel 
and therefore only singlet densities count. Our results are extensions of 
previous work. (3-5) 

There are two kinds of dynamic relations that are interesting in elec- 
trochemistry: those for the normal pressure and those for the stress and 
strain along the interface,, which have been measured experimentally. (6) We 
discuss in this paper the first ones for surfaces that are planar on the 
average, but not necessarily locally. This includes rough surfaces, but more 
interestingly interfaces between a single crystals and solutions. 

The most general definition of a planar interface is obtained by requir- 
ing that the average force acting on an individual molecule of the fluid of 
species i =  1 ..... m is integrated to a constant for arbitrarily large surfaces. 
The surface defined by z~(x, y; A) represents the contact surface, and is the 
solution of the equation 

wg(x, y, z )=A (1) 

where wi(r) = w~(x, y, z) is the interaction of the wall with molecule i for 
given x, y, and finite A. Then 

l Y ;A)=Bi  (2) 

and our condition simply is that Eq. (2) is satisfied for every component of 
the mixture. This is a planar surface on the average. 

For hard-core potentials we clearly choose z~(x, z) to be the hard-core 
surface, and the requirement is that the average z~ over the entire, infinite 
surface is a constant. 

2. N E U T R A L  S Y S T E M S  

Consider the total energy of the interface 

df l t  w= I ar, ~ y~ w,(1) p,(1) (3) 
i 

where wi(1)-= wi(r~; {b}, f~t) is the total interaction potential of the wall 
and a particle of species i situated at position rl with orientation f~t (O1 
are the Euler angles that define the molecular orientation). {b} is a set of 
parameters which define the position of the surface: if we produce an 
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arbitrary but small deformation of the surface, we get from Eq. (3) the 
Taylor expansion 

3W= f dr, dg~'-8n 2 ~ p , . ( 1 ) ~ 6 b  1 /  62W 6 2 ~6-ff-~ b6b ) s  + . . .  (4) 

We are interested in a particular deformation of the interface: a uniform 
displacement in the z direction. Then 

P = P o -  S Oz ~ dxldy, dl'~ 1 dz, ~ ' p , ( 1 )  aw'(1) (5) 
i OZ 1 

which expresses the force balance equation in the z direction. 
Let us consider first the case of hard walls near a fluid with hard con- 

vex molecules. The simplest case is that of a planar wall. The hard-core 
interaction is best expressed by the force relation 

Ow,(l ) 
kB T6 [F,( r , ,  f~, ) - 1 ] (6) 

Oz~ 

where the solution of Fi(rl ,$"~l)= 1 yields the position of contact of the 
molecule at the wall tS) when the orientation is given by the Euler angles 
f~J = ($1, 01, ~bl)- Then we obtain zl(f~l) as the solution of 

F i ( z  i ,  ~~ 1 ) = 1 ( 7 )  

For a hard ellipsoid of main axes A, B, C, for instance, we get ~8~ 

z t ( n l ) =  [ 1/( R~31,4 2 + R~,/B 2 + R]3/C2) ] ,/2 

= l/[cos2 01/C2 +sinZ 0i (sin2 q~/A2 +cos2 ~/B2)] 1/2 (8) 

Where R 0 are the matrix elements of Euler's rotation matrix. 
Replacing into Eq. (5), we get 

P = Po = kB T ~. f ~ p,[zl(n~ ), f~l ] cos 01 (9) 
i 

where Zl(fll)  is given by Eq. (8) When A = B = C  we get from Eq. (8) 

zl = A = a/2 (10) 

and we recover the well-known relation 

P =  Po = kT ~" p(a,/2) (11) 
i 
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When the walls are not flat, then we have to discuss the normal com- 
ponents of the pressure tensor and the tangential components of the 
stress tensor. Consider only crystal surfaces, which are more interesting 
experimentally. The equation for the contact distance is more complicated, 
since we have to solve a rather more complex equation involving convex 
and concave regions 

Fi(x,zl y l ; l ~ l ) - l = O  (12) 

which is solved to yield 

z~(1)-z(x~, Yl, ~i )  (13) 

To compute the force, we need to know the equation for the normal 
to the tangent plane more specifically, 

cos fls(X, y,)=ns'e. (14) 

where ns is the direction of the tangent plane of the molecule. As an 
example, consider the triangular lattice of lattice constant d and height h: 
The simplest form of the surface is 171 

z(x, y ) =  (h/2)(cos a + c o s  b) (15) 

where 

0= 7 z - 7  and 
2rt ( 2y'~ 

 =-a-vTJ 
The components of the normal vector ns = n.,.(x, y) are easily computed 
from Oz/ax and &/ay: 

1 ~ 1/2 

COS fls = 1 + (Tth/d) 2 [sin-' a +  (1/3)(sin a - 2  sin b)2]J (16) 

The normal pressure sum rule is then 

Po = kB T ~ j6i(con) (17) 
i 

where 

1 r di l l  
pi(con)=--~AfdX l dy t J-~-y~2 p,[z~(m)] COS f l s ( X l ,  y~)cos O. (18) 
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where now 0,, is the angle between the tangent plane at contact and the 
direction of the line joining the contact point and the center (also center of 
mass) of molecule i. 

3. CHARGED SYSTEMS 

The interaction w,(r) is now the sum of two contributions: a Coulomb 
or electrostatic term plus a nonelectrostatic, covalent term such as dis- 
cussed above: 

wi(r) = w~~ + w~'(r) (19) 

Consider different situations: 

1. The uniformly charged electrode facing a primitive model (con- 
tinuum dielectric) electrolyte. In this case 

w/(r) = w~C(r) + wTS(r) (20) 

The electrostatic contribution is in this case 

W~s(Z) = --eiEoz/2 (21) 

where ei is the charge of i, and Eo is the bare electric field. Using the 
electroneutrality relation 

q s  = - q ( z )  dz  = Eoe (22) 
4n  

where q s  is the surface charge density of the electrode, we immediately get 

P = Po-8nn [E~ (23) 

where Po is given by Eq. (17). 
It expresses the fact that the total pressure must be equal to the kinetic 

term due to the collisions of the molecules at the wall minus the attractive 
electrostatic contribution of a planar capacitor with charge density 
q s = eEo/4n .  

2. The flat electrode facing a nonprimitive model electrolyte. If the 
solvent consists of neutral molecules with a dipole (or higher multipoles), 
there will be no net force since the dipoles interact with the gradient of the 
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applied field VEo, which in this case is zero. Therefore, only the hard 
repulsive interactions count, and we get now 

1 
P = Po(solute) + Po(solvent) - ~n leo]- '  (24) 

where Po(solute) and Po(solvent) are the bulk pressure terms given by 
Eq. (17). Notice that now the dielectric constant has disappeared from this 
relation. This means that the electrostatic contribution in a solvent of high 
dielectric constant like water is now much smaller than in the primitive 
model, and that the covalent (hard-core) solvent term Po plays a much 
larger role in the makeup of the concentration profile near the electrode. 

3. The rough or structured electrode near a primitive electrolyte. The 
situation is now more complicated, since the charge distribution at the 
electrode surface will nit be uniform, and therefore both contact densities 
(for hard surfaces as well as for soft surfaces) will be functions of z as well 
as the position on the surface x, y. There will be a simple relation only for 
average quantities such as the average contact density near a hard plane, 
Eq. (18). 

It is clear that the electrostatic forces along the surface are of vanish- 
ing magnitude for a random rough surface, or zero for a periodic crystal 
surface. We assume that the surface has a fixed charge distribution, and 
since we are neglecting images, it is not metallic. 

Assume now a capacitor in vacuum, in which one plate is our surface 
S, with its charge distribution, and the second plate is very far, and has a 
uniform charge density -qs, such that there is no field sufficiently far 
behind the first plate of our capacitor. From Gauss'  theorem, and since the 
transverse components of the field E~ ), E~ ) are asymptotically zero at 
the sides of our capacitor, 

( E~ s = (1/S) f dx, dy, E~ 1 ) = (4n/~) qs (25 ) 

Since the faraway electrode creates a field -(1/2)(E~ which does not 
contribute to the pressure on the first electrode, the electrostatic contribu- 
tion to the pressure P,. is given by 

e~= l/S I dl ~ e,p,(1)[E~176 

=l/Sf  dl ~ e,p,(1)(1/2)(e~ 
i = 1  

+ l/S f dl ~ eipi(1)EE~ -(E__~ (26) 
i = l  
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Using charge electroneutrality, we get 

Pc= --8---~e (EO)s+l/Sydl i = l  ~ e'p'(1)[E~176 (27) 

where the first term is the Maxwell stress tensor contribution present in the 
flat electrode case, while the second term is a new one arising from fluctua- 
tions in the bare field. The integration should cover only a narrow region 
near the electrode surface. 

The other single-particle term containing the short-range interactions 
between the molecules and ions and the wall yields 

(p,.(1) c~w~~ = l/S ~sdx, dy, p~(1) V,w~~ ) (28) 
3z~ / s  

where 

(p ; (1 )  Ow~~ 1/S fs dx~ dy~ f~-~ dw~~ - -  = d z ~  p i ( l ) - -  (29) Ozl / s  ..... ,. ,'~) Ozl 

Putting it all together yields the general contact theorem for a planar on 
the average, but not necessarily smooth, surface: 

P=Po-~-~(E~ dl e,p,(1)[E~176 ] 
/ = 1  

( 0w,o.i 0 , )) i30, -- ~ pi( l )  
i = l  S 

This theorem is a generalization of the previously derived contact theorems 
to the realistic case of nonsmooth electrode surfaces. It contains the pre- 
vious results as particular cases. 

For a surface with an array of sticky adsorption sites, such as in the 
case of the sticky site model (SSM) discussed elsewhere, r the adsorption 
potential has the form 

with 

exp[ -flw~(r)]  = I + 2(R) ~(z) (31) 

M 

2 ( R ) =  ~ 2 ~ ( R - - n l a l - - n E a 2 )  (32) 
h i , n 2  

Here R = x, y is the position at the electrode surface, and z the distance to 
the contact plane, which is at a distance a/2 from the electrode. In (32), n~, 
n2 are integers, there are M sites on the electrode of area S, and ai,  a~ are 
the lattice vectors of the adsorption sites on the surface. The parameter 2a 
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represents the fugacity of an adsorbed atom of species a. Define now the 
regular part of the density function 

y~(1)= [p~(1)lp,] e a''',~~ (33) 

Replacing into the general contact theorem (30) gives ~5~ 

P=kBT ~ pAo,12)-~18g[E~ 2 
i = 1  

/Oyi(l) \  
+(M2./S) ~.= \ Oz, / p' (34) 

This theorem has been verified recently in ref. 4 for the exactly solved 
model of a one-component plasma in two dimensions. 

4. The rough electrode near a nonprimitive (for example, with a 
solvent of dipolar hard spheres) electrolyte. Now we have to include the 
effect of electric field gradients, which are not zero near the electrode. The 
total electrostatic force is ~'~ 

OwT(r) 
Or 

- -  - e ,  Eo + It," (VEo)  + (1 /6)  q , :  (VVEo)  (35)  

where/~  is the dipole moment of ~, q~ its quadrupole moment, and so on. 
We remark that now the solvent single-particle density p~.(1) is a function 
not only of r~, but also of the orientation of the molecules with respect to 
the electrode, which in the case of the linear dipoles is given by 01, ~bi. 
Therefore we expand 

p s ( 1 ) = ~  ' Y~,,(O #,) o y~,,+ (36) P ..... t, = P s . o + ~  l P s ,  m " " " 

m m 

The dipole contribution to the pressure is 

0weS(1)\ 4~#s ~- 1 0Eo(1) 
P ' ( 1 ) ~ ) s =  3 ;o dz,-~fdx, dy,ps(1) Oz---~ (37) 

which after a short calculation leads to 

1 
P = Po(solute) + P o ( s o l v e n t ) - ~  (E~ 

+ 1/Sfdl F. eiPi(1)[E~ - ( E ~  
i = 1  

47tkL. < ~  OE'_,,,(r,)~ (38) 
3 P~.m Ozl I s  
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where we have used 

Eo(1) = ~ E~,,(r ~ ) e,~,, (39) 
m 

where e~,, are the polar components of the unit vector. 
The last term of Eq. (38) corresponds to an electrostriction effect 

which vanishes for uniform external field Eo. 

5. The rough electrode near a nonprimitive electrolyte: Most of the 
models of water employed in the computer simulations consist of neutral 
molecules with embedded point charges. 

The sum over the charges q,. in each molecule is indicated by the index 
v and is zero for each molecule. Each of these charges is located at the 
position b~. relative to a molecular reference frame. From Eq. (30) we get 

1 
e = Po(solute) + Po(solvent) - ~ ( E ~  2 

m 

+ l / S f  dl ~ e ip i (1)[E~176 
i = l  

q,.E:(r~ + b,.) (40) 
I' S 

where ~,(1) is now the orientation-dependent density function of the 
solvent with embedded charges at contact. 

These relations point to the importance of using a model potential for 
liquid water that has the correct equation of state (pressure) rather than 
the correct bulk density (which may be off by a few percent) when com- 
puting density profiles near planar or rough electrodes. 
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